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Three new dynamic tensor thermal diffusivity subgrid-scale (SGS) heat flux (HF)
models are proposed for large-eddy simulation of thermal convection. The constitutive
relations for the proposed modelling approaches represent the most general explicit
algebraic formulations possible for the family of SGS HF models constructed using
the resolved temperature gradient and SGS stress tensor. As a result, these three
new models include a number of previously proposed dynamic SGS HF models
as special cases. In contrast to the classical dynamic eddy thermal diffusivity SGS
HF model, which strictly requires the SGS heat flux be aligned with the negative
of the resolved temperature gradient, the three new models proposed here admit
more degrees of freedom, and consequently provide a more realistic geometrical and
physical representation of the SGS HF vector. To validate the proposed models,
numerical simulations have been performed based on two benchmark test cases of
neutrally and unstably stratified horizontal channel flows.

1. Introduction
The application of a dynamic procedure to subgrid-scale (SGS) heat flux (HF)

modelling was introduced for large-eddy simulation (LES) of scalar transport shortly
after the dynamic SGS stress model was proposed by Germano et al. (1991). Moin
et al. (1991) proposed a dynamic linear eddy thermal diffusivity model (EDM) for
representing the SGS heat flux. The EDM is based on a linear constitutive relation
analogous to Fourier’s law for describing molecular heat conduction, and assumes
that the SGS HF vector is instantaneously proportional to and aligned with the
negative of the resolved temperature gradient, i.e. hj ∝ −∂θ̄/∂xj . It is known that
this overly simplified linear constitutive relation is inconsistent with the physics of
turbulent convection (Salvetti & Banerjee 1995; Peng & Davidson 2002; Porté-Agel
et al. 2001a,b; Higgins, Parlange & Meneveau 2004; Wang et al. 2007a,b) and does
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not correctly reflect the local geometrical property of the SGS HF vector. In spite of
these deficiencies, the EDM is still the most popular SGS HF model and has been
applied to predictions of various thermal convective flows with some success (see Lee,
Xu & Pletcher 2004; Pallares & Davidson 2002; Avancha & Pletcher 2002; Dailey,
Meng & Petcher 2003; Keating et al. 2004; Wang & Lu 2004; Tyagi & Acharya 2005;
Garg et al. 2000; Armenio & Sarkar 2002).

During the past decade, dynamic SGS HF models progressed from models of the
eddy thermal diffusivity (or more briefly, eddy diffusivity, represented by αsgs) type
to those based on a tensor thermal diffusivity (or more briefly, tensor diffusivity,
represented by Dij ) in order to further improve the physical and geometrical
representation of the SGS HF vector. Based on the original concept of scale-similarity
for modelling the SGS stress of Bardina, Ferziger & Reynolds (1980), Salvetti &
Banerjee (1995) introduced a dynamic scale-similarity SGS HF model. Salvetti &
Banerjee (1995) also introduced a dynamic two-parameter mixed model (DMM)
for representing the SGS heat flux, which combines the linear eddy diffusivity SGS
HF model with a scale-similarity SGS HF model. By using truncated Taylor series
expansions for approximating filtered flow variables, Porté-Agel et al. (2001a,b) and
Kang & Meneveau (2002) developed a simplified DMM (SDMM), which combines
the dynamic linear eddy diffusivity SGS HF model with a dynamic gradient SGS
HF model (DGM). The DGM in the approach of Porté-Agel et al. (2001a,b) and
Kang & Meneveau (2002) is analogous to Clark’s model for modelling the SGS
stress (Clark, Ferziger & Reynolds 1979), and uses the resolved velocity gradient
tensor (Āij

def
= ∂ūi/∂xj ) to build the tensor thermal diffusivity (i.e. Djk ∝ Ājk , see

also figure 1). This SDMM has been applied to the investigation of heat fluxes
and dissipation in an atmospheric boundary layer flow and in a heated wind-tunnel
wake flow using the a priori LES approach (Porté-Agel et al. 2001a,b; Kang &
Meneveau 2002; Higgins et al. 2004). In contrast to the approach of dynamic mixed
SGS HF models, Peng & Davidson (2002) proposed a dynamic homogeneous linear
tensor diffusivity model (DHLTDM) for representing the SGS heat flux in their
study of a buoyancy-driven turbulent flow. In their approach, the tensor diffusivity
is constructed as a homogeneous linear function of the resolved strain rate tensor
(defined as S̄ij

def
= (∂ūi/∂xj + ∂ūj /∂xi)/2). Using the theory of tensor functions, Wang

et al. (2007a,b) recently proposed a dynamic inhomogeneous linear tensor diffusivity
model (DILTDM), a dynamic full linear tensor diffusivity model (DFLTDM) and
a dynamic nonlinear tensor diffusivity model (DNTDM) for representation of the
SGS HF. The tensor diffusivity for the DILTDM is constructed as an inhomogeneous
linear function of the resolved strain rate and rotation rate tensors (the latter is
defined as Ω̄ij

def
= (∂ūi/∂xj − ∂ūj /∂xi)/2) (Wang et al. 2007a); whereas, the tensor

diffusivities for the DFLTDM and DNTDM are constructed as a full linear and a
quadratic nonlinear function of the strain rate tensor (Wang et al. 2007b), respectively.
The DILTDM, DFLTDM and DNTDM have been tested using a canonical mixed
forced and natural convective flow confined in a vertical channel. The SGS HF models
mentioned above are identified as dynamic explicit algebraic tensor thermal diffusivity
models, and later in §2.3 the hierarchical relationships between these models will be
addressed in greater detail.

In order to obtain deeper insights for constructing an improved SGS HF model
for LES, previous experience garnered from various developments in the Reynolds-
averaged Navier–Stokes (RANS) method and in the area of continuum physics have
proven to be very useful. Daly & Harlow (1970) proposed a so-called generalized
gradient diffusion hypothesis (GGDH) for building turbulent heat flux models for
the RANS approach. In comparison with the conventional eddy diffusivity approach,
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Figure 1. Relationships between the classical turbulent HF models for RANS and dynamic
SGS HF models for LES within the framework of the explicit algebraic modelling approach.
The relationships between the existing models and proposed models addressed in §2.3 are
highlighted using the large dashed-line box, all of which involve real symmetrical tensor
thermal diffusivities. †The concept for the DGM, namely

hDG
j =−DDG

jk
∂θ̄
∂xk

=−Cθ�̄
2Ājk

∂θ̄
∂xk

=−Cθ�̄
2 ∂ūj

∂xk

∂θ̄
∂xk

,

originates from the dynamic gradient SGS stress model of Clark et al. (1979). The SDMM
is built by mixing hDG

j with an eddy thermal diffusivity model. Here, Cθ is a dynamic model
coefficient. ‡The concept for a dynamic scale-similarity SGS HF model, namely,

hS
j = Cθ (ūj θ̄ − ¯̄uj

¯̄θ ),

originates from the dynamic scale-similarity SGS stress model of Bardina et al. (1980). The
DMM is built by mixing hS

j with an eddy thermal diffusivity model.

the proposed GGDH approach relates the tensor diffusivity linearly to the Reynolds
stress tensor, which in turn offers more degrees of freedom for modelling the turbulent
heat flux. Furthermore, the design of a turbulent HF model in the GGDH approach is
versatile owing to the availability of increasingly sophisticated Reynolds stress models
contributed by several generations of researchers. In continuum physics, the theory
of tensor invariants and functions is essential for modelling the nonlinear constitutive
relations required for describing crystal classes, viscoelastic phenomena and non-
Newtonian fluids. Modern development of rigorous formulations for nonlinear
constitutive laws using tensor functions derives largely from the pioneering efforts of
Reiner (1945) and Rivlin (1948). Since this seminal work, the mathematical theory of
tensor invariants and functions and its application to the formulation of nonlinear
constitutive relations have been extensively developed (see Spencer 1971; Zheng
1994). The application of tensor invariants and functions for the construction of
algebraic turbulent stress models within the RANS approach was systematically
investigated by Lumley (1970), and further advanced by Pope (1975) and Rodi (1976).
Since then, tensor invariants and functions have been applied to the construction
of RANS algebraic turbulent HF models for studying thermal convection. Recent
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advancements in this area of RANS modelling have been the subject of a number
of comprehensive reviews (So & Speziale 1999; Hanjalić 2002; Younis, Speziale &
Clark 2005).

Previous approaches for dynamic SGS HF modelling, as represented by the EDM
(Moin et al. 1991), DGM and DMM (Salvetti & Banerjee 1995; Porté-Agel et al.
2001a,b), DHLTDM (Peng & Davidson 2002), DILTDM (Wang et al. 2007a), and
DFLTDM and DNTDM (Wang et al. 2007b) are based on the resolved velocity
gradient tensor Āij (or its symmetrical and asymmetrical components, i.e. the resolved
strain rate tensor S̄ij and the rotation rate tensor Ω̄ij , respectively) for the construction
of the constitutive relations. In contrast to these previous investigations, the objective
of the current research is to use the theory of tensor functions (Spencer 1971; Zheng
1994) to extend the concept of GGDH from the context of RANS to that of LES to
develop three new dynamic tensor diffusivity SGS HF models based on the SGS stress
tensor τij . One of the most attractive features of the present new modelling approach
is that because the tensor diffusivity for the three proposed models is a tensor function
(linear or nonlinear) of τij , a number of explicit algebraic SGS stress models proposed
previously by various researchers can be utilized for constructing the SGS HF models.
As such, the model for the SGS HF vector has more degrees of freedom (dependent on
the choice of the SGS stress model) with the result that the concomitant constitutive
relationship achieves greater generality in comparison with the conventional
approaches.

This paper is organized as follows: in §2, formulations for the SGS stress and HF
models are introduced; in §3, the test cases and numerical algorithm are described;
in §4, the results for LES of neutrally and unstably stratified flows are analysed; and
finally in §5, the major conclusions of this research are summarized.

2. SGS stress and heat flux models
In LES of thermal convection, the filtered continuity, momentum and scalar

transport equations together form the system of governing equations for determining
the filtered velocity and scalar (temperature) fields, which take the following form for
an incompressible flow:

∂ūi

∂xi

= 0, (2.1)

∂ūi

∂t
+

∂

∂xj

(ūi ūj ) = − 1

ρ

∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

− ∂τij

∂xj

− βgi(θ̄ − Θr ), (2.2)

∂θ̄

∂t
+

∂

∂xj

(ūj θ̄ ) = α
∂2θ̄

∂xj∂xj

− ∂hj

∂xj

, (2.3)

where θ̄ represents the filtered temperature, [gi] = [0, −g, 0]T is the gravitational
acceleration vector, ρ is the density of the fluid (air), ν is the kinematic viscosity, β is
the thermal expansion coefficient, α is the molecular thermal diffusivity, and Θr is a
reference temperature, which for our test case of an unstably stratified channel flow,
is taken as the bulk temperature, i.e.

Θr = θB =

∫ 2δ

0

〈θ̄〉dx2/2δ.

Here, δ is the half-channel width, and 〈·〉 corresponds to a quantity averaged both in
time and over the homogeneous (x1, x3)-plane. The streamwise, wall-normal and
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Figure 2. Physical domain for an unstably stratified flow in a horizontal channel.

spanwise coordinates for the Cartesian frame are denoted using x1, x2 and x3,
respectively (see figure 2). As a consequence of the filtering process, the so-called
SGS stress tensor and SGS HF vector appear in the above system of governing
equations, and are defined as

τij
def
= uiuj − ūi ūj

and

hj
def
= ujθ − ūj θ̄ ,

respectively. In the following two Subsections, the conventional and proposed
modelling formulations for τij and hj , required for closing the above system of
governing equations, are described.

2.1. SGS stress models

Two dynamic SGS stress models are used: namely, the conventional dynamic
Smagorinsky model (DM) of Lilly (1992) and dynamic nonlinear SGS stress model
(DNM) of Wang & Bergstrom (2005). The following text briefly describes these two
dynamic SGS stress models.

SGS stress model 1 (DM)

The constitutive relation for the DM is based on a tensor function of the resolved
strain rate tensor S̄ij ,

τ ∗
ij = τij − τkk

3
δij = −2CS�̄

2|S̄|S̄ij , (2.4)

where |S̄| = (2S̄ij S̄j i)
1/2 is the norm of the resolved strain rate tensor, �̄ is the

grid-level filter width, δij is the Kronecker delta, and an asterisk represents a trace-
free tensor, i.e. (·)∗

ij

def
= (·)ij − (·)kkδij /3. The SGS eddy viscosity implied in (2.4) is

νsgs = CS�̄
2|S̄|, and therefore, this model can be further simplified as τ ∗

ij = −2νsgs S̄ij .
By minimizing the residual of the Germano identity following the dynamic procedure
of Lilly (1992), the model coefficient CS can be obtained as

CS = − Mij Lij

MmnMmn

, (2.5)

where Lij
def
= ˜̄uiūj − ˜̄ui

˜̄uj is the resolved Leonard-type stress; and Mij
def
= αij − β̃ij is

a differential tensor with αij
def
= 2 ˜̄

�2|˜̄S|˜̄Sij and βij
def
= 2�̄2|S̄|S̄ij . In these equations, the

filtered quantities at the grid level are denoted using an overbar, while the filtered
quantities at the test-grid level for the dynamic procedure are denoted using a tilde.
Following the usual convention, the grid-level filter width is considered as the grid



130 B.-C. Wang, E. Yee, D. J. Bergstrom and O. Iida

size itself, whereas the test-grid-level filter width for the dynamic procedure is set to
twice the grid size.

SGS stress model 2 (DNM)

The constitutive relation for the DNM is based on an explicit nonlinear quadratic
tensorial polynomial constitutive relation originally proposed by Speziale (1987) (see
also Gatski & Speziale 1993) for modelling of the Reynolds stress tensor in a RANS
approach. By analogy, the SGS stress tensor can be modelled using the following
functional form within the context of an LES approach:

τ ∗
ij = −CSβij − CWγij − CNηij . (2.6)

The definition of βij remains unchanged and the other two base tensor functions

are defined as γij
def
= 4�̄2(S̄ikΩ̄kj + S̄jkΩ̄ki) and ηij

def
= 4�̄2(S̄ikS̄kj − S̄mnS̄nmδij /3),

respectively. It can be shown (Wang & Bergstrom 2005) that the values of the three
model coefficients CS , CW and CN can be obtained by minimizing the residual of the
Germano identity following the dynamic procedure of Lilly (1992) as⎡

⎢⎣ MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij

⎤
⎥⎦ ·

⎡
⎢⎣ CS

CW

CN

⎤
⎥⎦ = −

⎡
⎢⎣

L∗
ijMij

L∗
ijWij

L∗
ijNij

⎤
⎥⎦ . (2.7)

Here, the definition of Mij remains unchanged and the other two differential tensors
are defined as Wij

def
= λij − γ̃ij and Nij

def
= ζij − η̃ij , respectively, with λij

def
=4 ˜̄

�2(˜̄Sik
˜̄Ωkj+

˜̄Sjk
˜̄Ωki) and ζij

def
= 4 ˜̄

�2(˜̄Sik
˜̄Skj − ˜̄Smn

˜̄Snmδij /3).
The design of the constitutive relation (2.6), in terms of the choice of the three

constituent tensorial base components (i.e. βij , γij and ηij ) is not arbitrary: (i) the first
term βij is the well-known Smagorinsky component which primarily relates to the SGS
dissipation and forwardscatter of turbulent kinetic energy (TKE) from the resolved
to subgrid-scale motions; (ii) the second term γij does not make any contribution
to the TKE transfer between the resolved and subgrid scales, but according to
a recent systematic a priori LES study of Horiuti (2003), it significantly improves
the correlation between the exact τij extracted from a direct numerical simulation
(DNS) database and that predicted by the nonlinear model; and, (iii) as demonstrated
previously (Wang & Bergstrom 2005; Wang et al. 2006a), the third term ηij contributes
significantly to the backscatter of TKE from the subgrid to the resolved scales. The
three features mentioned here are among the most important criteria for evaluation
of a successful SGS stress model. Speziale’s constitutive relation, on which the DNM
is based, offers an effective representation to model individually these three important
physical features using three independent terms. Further applications of the DNM
can be found in Wang et al. (2006a) on the study of the topological features of wall-
bounded turbulent flows and in Wang, Yee & Bergstrom (2006b, 2008) on the study
the geometrical properties of the SGS stress tensor and resolved vorticity vector.

2.2. SGS heat flux models

The focus of this research is on modelling the SGS HF, rather than the SGS stress.
For this purpose, we propose three new dynamic models and relate them to existing
SGS HF models. In order to perform a comparative study, the three proposed SGS
HF models are tested against the conventional EDM. All the SGS HF models
investigated in this study can be categorized under the general framework of tensor
thermal diffusivity HF modelling originally introduced by Batchelor (1949), who
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suggested the following model for representing the turbulent HF vector 〈u′
j θ

′〉e in a
RANS approach:

〈u′
j θ

′〉e = −Djk

∂〈θ〉e

∂xk

, (2.8)

where Djk is the so-called turbulent tensor thermal diffusivity, and 〈·〉e represents
an ensemble-averaged quantity in a RANS approach. An important application
of Batchelor’s suggestion is the GGDH model proposed by Daly & Harlow (1970),
which models the turbulent tensor thermal diffusivity linearly in terms of the Reynolds
stresses and expresses the turbulent HF vector as

〈u′
j θ

′〉e = −CθTe〈u′
ju

′
k〉e

∂〈θ〉e

∂xk

, (2.9)

where Cθ is a model coefficient, Te is an appropriate turbulent time scale, 〈u′
ju

′
k〉e is

the Reynolds stress tensor, and the turbulent tensor thermal diffusivity is defined as
Djk = CθTe〈u′

ju
′
k〉e. The idea of using the GGDH approach of Daly & Harlow (1970)

to formulate a constitutive relation for modelling the SGS HF vector in the context
of LES has been briefly mentioned in Peng & Davidson (2002). In the remainder
of this Subsection, we summarize the formulation of four SGS HF models, which
include the conventional EDM and our three proposed SGS HF models. We will also
demonstrate that our three proposed models correspond to generalized formulations
for the SGS HF vector in the sense that they include a number of conventional
dynamic SGS HF models as special cases, such as the EDM, DHLTDM, DFLTDM
and DNTDM.

SGS heat flux model 1 (EDM)

The EDM model proposed by Moin et al. (1991) expresses the SGS heat flux as

hj = −Cθ�̄
2|S̄| ∂θ̄

∂xj

, (2.10)

where the scalar eddy diffusivity implied by (2.10) is αsgs = Cθ�̄
2|S̄|, which can be

further written in a general tensor diffusivity form using the Kronecker delta as
follows:

DE
jk = αsgsδjk = Cθ�̄

2|S̄|δjk. (2.11)

In view of this, (2.10) can be re-cast as hj = −DE
jk∂θ̄/∂xk . Introducing the grid-level

and test-grid-level base vector functions as bj
def
= �̄2|S̄|∂θ̄/∂xj and aj

def
= ˜̄

�2|˜̄S|∂ ˜̄θ/∂xj ,
the SGS HF vector at the grid level as represented by (2.10) can then be expressed as

hj = −Cθbj . Similarly, the SGS HF vector at the test-grid level (Hj
def
= ũj θ − ˜̄uj

˜̄θ ) can
be expressed as Hj = −Cθaj . The grid- and test-grid-level SGS HF vectors satisfy the
vector identity:

Lj = Hj − h̃j , (2.12)

where Lj
def
= ˜̄uj θ̄ − ˜̄uj

˜̄θ is a resolved heat flux vector directly computable in the
simulation. By substituting the grid- and test-grid-level SGS HF models into the

vector identity and assuming that h̃j = −C̃θbj ≈ −Cθ b̃j , a residual vector that
expresses the difference between the left-hand side and right-hand side of the vector
identity emerges:

Ej = Lj + Cθ (aj − b̃j ) = Lj + CθMj, (2.13)
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where Mj
def
= aj − b̃j is a differential vector. By minimizing the norm of the residual

of the vector identity (i.e. E def
= Ej Ej ) using the least-squares method, the model

coefficient Cθ can be obtained,

Cθ = −LjMj

MiMi

. (2.14)

SGS heat flux model 2 (GGM)

The original constitutive relation of Daly & Harlow (1970) is based on the Reynolds
stress tensor for modelling the turbulent heat flux within the RANS approach. In the
context of LES, this constitutive relation results in

hj = −CθGTτjk

∂θ̄

∂xk

. (2.15)

In an LES approach, it is conventional for the isotropic part of τij (i.e. τkkδij /3) to be
incorporated with the filtered pressure term p̄, with the result that only the trace-free
SGS stress tensor τ ∗

ij is modelled. Therefore, in a conventional LES approach, (2.15)
is simplified to

hj = −CθGTτ ∗
jk

∂θ̄

∂xk

, (2.16)

where T is a characteristic subgrid time scale which is evaluated using the norm
of the resolved velocity gradient tensor Āij , i.e. T = 1/|Ā| (or optionally using the
norm of the resolved strain rate tensor as T = 1/|S̄|). The norm of the resolved
velocity gradient tensor is defined as |Ā| def

= (2Āij Āij )
1/2 = (2S̄ij S̄ij + 2Ω̄ij Ω̄ij )

1/2 =
(|S̄|2 + |Ω̄ |2)1/2. Equations (2.15) and (2.16) form the constitutive relations for our
proposed dynamic GGDH model for representing the SGS heat flux (GGM). From
(2.16), the tensor diffusivity for the GGM can be inferred as

DG
jk = f (τ ∗

jk) = CθGTτ ∗
jk, (2.17)

which is a homogenous linear tensor function of τ ∗
jk . Here, homogeneity derives from

a terminology used in linear algebra, in which a linear transformation that satisfies
the condition DG

jk = f (τ ∗
jk) = 0 if τ ∗

jk = 0 is referred to as being homogeneous.
By using the norm of the resolved velocity gradient tensor for evaluating the SGS

time scale at both the grid and test-grid levels, and defining the base vector functions
as

bG
j

def
=

τ ∗
jk∣∣Ā∣∣ ∂θ̄

∂xk

and aG
j

def
=

T ∗
jk

| ˜̄A|
∂ ˜̄θ

∂xk

, (2.18)

the grid and test-grid level SGS HF vectors can then be expressed succinctly as

hj = −CθG bG
j and Hj = −CθG aG

j , respectively. Here T ∗
jk

def
= (ũjuk

− ˜̄uj
˜̄uk)

∗ represents
the trace-free SGS stress tensor at the test-grid level. Similarly, the optimal model
coefficient CθG can be obtained by minimizing the residual of the vector identity using
the least squares method,

CθG = −LjGj

GiGi

, (2.19)

where Gj
def
= aG

j − b̃G
j is a differential vector.

It should be noted that the two modelling approaches represented by (2.15) and
(2.16) are slightly different, in that the tensor diffusivity for the latter is trace-free
(i.e. tr(DG

jk) = tr(CθGTτ ∗
jk) = 0). In consequence, the local instantaneous value of DG

jk
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is not guaranteed to be positive definite. This can result in a backscatter of scalar
energy from the subgrid to resolved scales. Later in §4.3, we will explore this subject
in greater detail.

SGS heat flux model 3 (LGGM)

As demonstrated earlier, the tensor diffusivity for the EDM is a function of S̄ij

of the zeroth order (i.e. DE
jk = Cθ�̄

2|S̄|δjk). Within the framework of constitutive

relations of the form hj = f (τ ∗
ij , ∂θ̄/∂xj ), a tensor diffusivity of the zeroth order can

be analogously constructed as DP
jk = CθP T|τ |δjk . The tensor diffusivity for the GGM

based on the original GGDH approach of Daly & Harlow (1970) is a homogeneous
linear function of τ ∗

ij of the first order (i.e. DG
jk = CθGTτ ∗

jk). According to the theory of
tensor polynomial functions, a full linear tensor diffusivity function of τ ∗

jk consists of
both zeroth- and first-order parts. Therefore, we can extend the GGDH constitutive
relation of Daly & Harlow (1970) from a homogeneous linear tensor function to an
inhomogeneous full linear tensor function as follows:

DL
jk = DP

jk + DG
jk (2.20)

= CθP T|τ |δjk + CθGTτ ∗
jk.

This corresponds to the following constitutive relation for our proposed full linear
dynamic GGDH model (LGGM) for representing the SGS heat flux:

hj = −DL
jk

∂θ̄

∂xk

= −CθP T|τ | ∂θ̄

∂xj

− CθGTτ ∗
jk

∂θ̄

∂xk

. (2.21)

Introduce the base vector functions

bP
j

def
=

|τ |
|Ā|

∂θ̄

∂xj

and aP
j

def
=

|T|
˜̄|A|

∂ ˜̄θ

∂xj

, (2.22)

where |τ | def
= (2τ ∗

ij τ
∗
ij )

1/2 and |T| = (2T ∗
ij T

∗
ij )

1/2 are the norms of the SGS stress tensor
at the grid and test-grid levels, respectively. With these definitions, the grid- and
test-grid-level SGS HF vectors can be simplified to hj = −CθP bP

j − CθGbG
j and

Hj = −CθP aP
j − CθGaG

j , respectively. The dynamic model coefficients CθP and CθG

can be obtained by minimizing the residual (E) of the vector identity using the least-
squares method. It can be shown by setting ∂E/∂CθP = 0 and ∂E/∂CθG = 0 that the
following system of equations for computing the model coefficients is obtained:[

PjPj PjGj

GjPj GjGj

]
·
[

CθP

CθG

]
= −

[ LjPj

LjGj

]
, (2.23)

where Pj
def
= aP

j − b̃P
j is a differential vector.

SGS heat flux model 4 (QGGM)

According to the theory of tensor invariants and functions, a vector-valued function
of a second-order symmetric tensor M and a vector v can be represented by Noll’s
formula (Zheng 1994) as follows:

h = ϕ0v + ϕ1Mv + ϕ2M
2v, (2.24)



134 B.-C. Wang, E. Yee, D. J. Bergstrom and O. Iida

where ϕi (i = 0, 1, 2) are coefficients of the form ϕi = ϕi(IM, IIM, IIIM, Iv, IMv, IIMv).
Here, IM = tr(M), IIM = tr(M2) and IIIM = tr(M3) are the three independent invariants
of M; Iv = v · v is the invariant of v; and IMv = v · Mv and IIMv = v · M2v are
the two independent invariants for M and v. Noll’s formula provides an explicit,
inhomogeneous, complete and irreducible tensor function of M and v, forming the
basis for our proposed quadratic dynamic GGDH model (QGGM) for representing
the SGS heat flux:

hj = −D
Q
jk

∂θ̄

∂xk

= −CθP T|τ | ∂θ̄

∂xj

− CθGTτ ∗
jk

∂θ̄

∂xk

− CθQT
τ ∗
jiτ

∗
ik

|τ |
∂θ̄

∂xk

, (2.25)

where the tensor diffusivity is a quadratic nonlinear tensor function of τ ∗
ij ,

D
Q
jk = CθP T|τ |δjk + CθGTτ ∗

jk + CθQT
τ ∗
jiτ

∗
ik

|τ | . (2.26)

The three terms on the right-hand side of (2.25) are identified as: the zeroth-order
tensor diffusivity (or eddy diffusivity) component (similar to the conventional EDM,
or Model 1); the first-order homogeneous tensor diffusivity component (corresponding
to the GGM, or Model 2); and the quadratic nonlinear tensor diffusivity component.
Equations (2.24) and (2.25) are inhomogeneous owing to the presence of the SGS
eddy diffusivity term (the term related to δjk), irreducible because none of v, Mv

and M2v can be expressed as a single-valued function of the remaining terms, and
complete because any vector function of the form h = f (M, v) can be expressed by
(2.24). As such, no higher-order terms (e.g. terms related to τ ∗

jiτ
∗
ilτ

∗
lk∂θ̄/∂xk) should

appear in (2.25), since these are not independent of the existing terms.
Introduce the base vector functions

b
Q
j

def
=

τ ∗
jiτ

∗
ik

|τ || Ā|
∂θ̄

∂xk

and a
Q
j

def
=

T ∗
jiT

∗
ik

|T | ˜̄|A|
∂ ˜̄θ

∂xk

. (2.27)

The grid-level SGS HF can be simplified as

hj = −CθP bP
j − CθGbG

j − CθQb
Q
j . (2.28)

Similarly, the constitutive relation for the SGS HF at the test-grid level can be
expressed as

Hj = −CθP aP
j − CθGaG

j − CθQa
Q
j . (2.29)

By substituting (2.28) and (2.29) into the vector identity (i.e. (2.12)), a 3 × 3 matrix
system for computing the model coefficients can be directly obtained as

[Pj , Gj , Qj ] · [CθP , CθG, CθQ]T = −Lj , (2.30a)

for j = 1, 2 and 3; or equivalently,⎡
⎢⎣ P1 G1 Q1

P2 G2 Q2

P3 G3 Q3

⎤
⎥⎦ ·

⎡
⎢⎣ CθP

CθG

CθQ

⎤
⎥⎦ = −

⎡
⎢⎣ L1

L2

L3

⎤
⎥⎦ . (2.30b)

For brevity, we use K · c = −l to denote this linear system of equations. Here, Qj
def
=

a
Q
j − b̃

Q
j is a differential vector, and the definitions of Pj and Gj remain unchanged.
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In the derivation of (2.30a), we made use of an assumption analogous to that adopted

in the dynamic procedure of Lilly (1992): ˜CθP bP
j ≈ CθP b̃P

j , ˜CθGbG
j ≈ CθGb̃G

j and˜
CθQb

Q
j ≈ CθQb̃

Q
j .

It should be noted that (2.30a) (or (2.30b)) derives directly from the vector identity
(i.e. (2.12)), without having to apply the least-squares approach, which is a unique
feature for a dynamic SGS HF model with three coefficients. Left-multiplying both
sides of (2.30a) by KT , we obtain the following matrix system:

(KT K) · c = −KT · l. (2.31)

Equation (2.31) can be used as an alternative to (2.30a) for computing the model
coefficients. Equation (2.31) can also be obtained using the least-squares approach by
setting ∂E/∂CθP = ∂E/∂CθG = ∂E/∂CθQ = 0, where E = Ej Ej and Ej is the residual
vector which in this case takes the following form:

Ej = Lj + CθP

(
aP

j − b̃P
j

)
+ CθG

(
aG

j − b̃G
j

)
+ CθQ

(
a

Q
j − b̃

Q
j

)
= Lj + CθP Pj + CθGGj + CθQQj . (2.32)

The differential vectors Pj , Gj and Qj are linearly independent tensor functions.

This is because bP
j , bG

j and b
Q
j are linearly independent functions of τ ∗

ij and ∂θ̄/∂xj ;
aP

j , aG
j and a

Q
j are linearly independent functions of T ∗

ij and ∂ ˜̄θ/∂xj ; and τ ∗
ij and T ∗

ij are
two independent tensor variables related by the Germano identity. This is a desirable
mathematical property for both (2.30a) and (2.31) in terms of the numerical stability.
However, owing to the complexity of the problem and physics of the turbulent flow,
the numerical stability of a modelling approach cannot be entirely diagnosed using
an a priori mathematical analysis, and indeed, needs to be confirmed by conducting
numerical simulations. From the numerical tests performed in this study, it is observed
that both (2.30a) and (2.31) can be applied to compute the model coefficients without
encountering any numerical instability. The numerical results presented in this paper
were obtained using (2.30a), rather than (2.31).

From the numerical simulations conducted here, we observed that the DNM is
numerically more robust than the DM. The DNM can be applied locally at each time
step of the flow simulation without resorting to any form of plane-averaging for a
stable computation of the model coefficients. In contrast, when the DM was applied
to modelling the SGS stress, it was always necessary to use plane-averaging to achieve
numerical stability. This observation is consistent with our previous experience (Wang
& Bergstrom 2005), which thoroughly investigated the numerical stability of the DNM
and DM based on a turbulent Couette flow. Since the focus of the current research is
on the SGS HF models, we now discuss the numerical stability of the proposed SGS
HF models. For the proposed GGM (cf. (2.19)), LGGM (cf. (2.23)) and QGGM (cf.
(2.30a)), we observed that these formulations can also be applied locally at each time
step without using plane-averaging for a stable computation of the model coefficients,
if the DNM is used for constructing their constitutive relations. This desirable feature
of the models is related to the utilization of a tensor diffusivity in the construction of
their constitutive relations. When the DNM (which is a quadratic tensor function of
S̄ij and Ω̄ij ) is used, the constitutive relations of our three proposed SGS HF models
(GGM, LGGM and QGGM) become higher-order (second-order and above) complex
tensor functions of S̄ij , Ω̄ij and ∂θ̄/∂xj . The greater complexity (and concomitant
flexibility) of these proposed SGS HF models leads generally to a smaller probability
for the determinant of the coefficient matrix of (2.19) for the GGM, (2.23) for the
LGGM, and (2.30a) for the QGGM to vanish identically in comparison to that for the
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Acronym Description References

EDM linear eddy thermal diffusivity model Moin et al. (1991)
DSSM scale-similarity SGS HF model Salvetti & Banerjee (1995)
DMM two-parameter mixed SGS HF model Salvetti & Banerjee (1995)
SDMM simplified DMM Porté-Agel et al. (2001a,b)

Kang & Meneveau (2002)
DGM gradient SGS HF model Porté-Agel et al. (2001a,b)

Kang & Meneveau (2002)
DHLTDM homogeneous linear tensor diffusivity model Peng & Davidson (2002)
DILTDM inhomogeneous linear tensor diffusivity model Wang et al. (2007a)
DFLTDM full linear tensor diffusivity model Wang et al. (2007b)
DNTDM nonlinear tensor diffusivity model Wang et al. (2007b)
GGM GGDH SGS HF model present
LGGM full linear GGDH SGS HF model present
QGGM quadratic GGDH SGS HF model present

Table 1. Summary of the relevant dynamic SGS HF models. See figure 1 for the relationships
between the above SGS HF models and annotations on the references relevant to the dynamic
scale-similarity, gradient and mixed SGS HF models.

determinant of the coefficient matrix of (2.14) for the EDM. This is expected to lead
to a greater stability in the application of the GGM, LGGM and QGGM relative to
that of the EDM, which is consistent with our current experience in the application
of these models to the two test flow problems studied in this paper. Nevertheless, it
remains an open question whether the observed greater numerical stability of these
SGS HF models holds generally for other types of flows.

2.3. Relations between different SGS HF models

In §2.2, we reviewed the classical dynamic SGS HF model (i.e. the EDM), and also
proposed three new dynamic SGS HF models (i.e. the GGM, LGGM and QGGM).
In this Subsection, we will demonstrate the relationships between the existing and
proposed SGS HF models and further show that our proposed GGM, LGGM and
QGGM are general modelling approaches, which include a number of previous
models as special cases. For convenience, we use table 1 to summarize the SGS HF
models to be discussed in this Subsection.

Figure 1, in §1, illustrates the various relationships between the RANS and LES
HF models. As shown in this figure, most of the dynamic SGS HF models are unified
under the general framework of tensor thermal diffusivity HF modelling originally
proposed by Batchelor (cf. (2.8)). Over the past several decades, a significant effort has
been made to obtain a physically valid mathematical representation for the tensor
thermal diffusivity Dij within the RANS framework (e.g. Daly & Harlow 1970;
Yoshizawa 1988; Launder 1988; Rogers, Mansour & Reynolds 1989; Wikström,
Wallin & Johansson 2000; Suga & Abe 2000; Park, Sung & Suzuki 2003; So, Jin &
Gatski 2004; Younis et al. 2005). Among these various approaches for RANS, the
simplest and most influential is perhaps the GGDH model of Daly & Harlow (1970),
which assumes that Dij is linearly proportional to the Reynolds stress tensor.

As demonstrated previously, a direct implementation of Daly & Harlow’s approach
in the context of LES results in the GGM, which by analogy assumes Dij to be linearly
proportional to the SGS stress tensor τij (or its trace-free form τ ∗

ij ). An extension of the
GGDH constitutive relation from a homogeneous linear form to an inhomogeneous
full linear form results in the proposed LGGM. A further extension of the concept
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of GGDH from a linear to a quadratic form results in the proposed QGGM,
which corresponds to the most general modelling equation for any explicit algebraic
constitutive relation that is based on only τij and ∂θ̄/∂xj (namely hj = f (τij , ∂θ̄/∂xj )).
This general constitutive relation for QGGM is also a direct result of Noll’s formula,
which is commonly used in continuum physics for constructing constitutive relations
for viscoelastic materials and non-Newtonian fluids (Spencer 1971; Zheng 1994).

The derivation of the EDM of Moin et al. (1991), DHLTDM of Peng & Davidson
(2002), and DFLTDM and DNTDM of Wang et al. (2007b) as special cases of our
general modelling approach (i.e. the QGGM, LGGM and GGM) is straightforward
and the hierarchical relations between these models are explicitly illustrated in figure 1.
On adoption of the Smagorinsky constitutive relation, the SGS stress tensor assumes
the classical form τ ∗

ij = −2CS�̄
2|S̄|S̄ij . Substituting this classical SGS stress model

into the QGGM and evaluating the SGS time scale as T = 1/|S̄|, results in an
equivalent form for the DNTDM of Wang et al. (2007b):

hj = −DN
jk

∂θ̄

∂xk

= −C ′
θP �̄2|S̄| ∂θ̄

∂xj

− C ′
θG�̄2S̄jk

∂θ̄

∂xk

− C ′
θQ�̄2 S̄j i S̄ik

|S̄|
∂θ̄

∂xk

. (2.33)

Here, C ′
θP , C ′

θG and C ′
θQ are model coefficients that can be calibrated dynamically

using the vector identity. The tensor diffusivity associated with (2.33) is a quadratic
nonlinear tensor function of S̄ij given by

DN
jk = C ′

θP �̄2|S̄|δjk + C ′
θG�̄2S̄jk + C ′

θQ�̄2 S̄j i S̄ik

|S̄|
. (2.34)

Equation (2.33) represents the most general expression for all the explicit algebraic
constitutive relations of the form hj = f (S̄ij , ∂θ̄/∂xj ), which is simply a special case of
hj = f (τij , ∂θ̄/∂xj ) when the classical Smagorinsky assumption is used for modelling
the SGS stress tensor. As such, we have demonstrated that the DNTDM is a special
case of the QGGM.

As in the derivation of (2.33), the DFLTDM and DHLTDM can be directly
obtained by substituting the classical Smagorinsky constitutive relation for the SGS
stress tensor into the LGGM and GGM, respectively. The DFLTDM of Wang et al.
(2007b) mentioned above assumes the form

hj = −DFL
jk

∂θ̄

∂xk

= −C ′
θP �̄2|S̄| ∂θ̄

∂xj

− C ′
θG�̄2S̄jk

∂θ̄

∂xk

, (2.35)

where the tensor diffusivity is a full linear tensor function of S̄ij ,

DFL
jk = f (S̄jk) = C ′

θP �̄2|S̄|δjk + C ′
θG�̄2S̄jk. (2.36)

The DHLTDM of Peng & Davidson (2002) assumes the form

hj = −DHL
jk

∂θ̄

∂xk

= −C ′
θG�̄2S̄jk

∂θ̄

∂xk

, (2.37)

where the tensor diffusivity is a homogeneous linear tensor function of S̄ij ,

DHL
jk = f (S̄jk) = C ′

θG�̄2S̄jk. (2.38)

As indicated earlier, the EDM is based on a scalar thermal diffusivity which is
spatially isotropic. Assuming that the SGS stress is isotropic (i.e. τjk = −C1�̄

2|S̄|2δjk)
and evaluating T using |S̄|, the EDM can be directly obtained from the GGM
(cf. (2.15)), LGGM (cf. (2.21)), or QGGM (cf. (2.25)).



138 B.-C. Wang, E. Yee, D. J. Bergstrom and O. Iida

An alternative method to derive an equivalent form of (2.33) for the DNTDM is
to use the GGM (cf. (2.15)). If the SGS time scale is evaluated as T = 1/|S̄| and the
following quadratic model is used for the SGS stress tensor

τjk = −C1�̄
2|S̄|2δjk − C2�̄

2|S̄|S̄jk − C3�̄
2S̄j i S̄ik, (2.39)

then the DNTDM can be directly derived from the GGM. Here, C1, C2 and C3

are model coefficients for the SGS stress tensor. These three coefficients can be
incorporated into the coefficients of the SGS HF model, the last of which can then
be calibrated dynamically using the vector identity.

The derivation of the EDM, DHLTDM and DFLTDM as special cases of the
DNTDM (cf. (2.33)) is straightforward. For example, if C ′

θQ = 0, the DNTDM
reduces to the DFLTDM. If C ′

θG = 0, the DFLTDM further reduces to the EDM.
However, if C ′

θP = 0, the DFLTDM reduces to the DHLTDM.
Note that although we have demonstrated that the GGM, LGGM and QGGM

are specific realizations of a general modelling approach based on the family of
constitutive relations hj = f (τij , ∂θ̄/∂xj ), our discussion is restricted to the explicit
algebraic approaches for models with a symmetrical tensor thermal diffusivity (i.e.
Djk = Dkj ). Consequently, as shown in figure 1, several existing SGS HF models
cannot be represented by this proposed approach. For example, SGS HF models
that are derived from a non-symmetric tensor thermal diffusivity, designed using
the assumption of scale-similarity, extracted using a deconvolution procedure (Stolz,
Adams & Kleiser 2001), or constructed using knowledge of the local vortex alignment
patterns (Pullin 2000) are not contained within our current modelling approach. As
shown in figure 1, these models include the DILTDM (Wang et al. 2007a), SDMM
(Porté-Agel et al. 2001a,b; Kang & Meneveau 2002), DGM, DMM and dynamic
scale-similarity SGS HF model (Salvetti & Banerjee 1995). Since these models are
not the primary focus of this research, we refer the interested reader to the above
mentioned papers for a detailed description of the modelling procedures.

3. Test case and numerical algorithm
In order to validate the proposed SGS HF models, numerical simulations have

been performed using two benchmark test cases of fully developed neutrally stratified
and unstably stratified turbulent channel flows. For neutrally and unstably stratified
turbulent channel flows, the temperature behaves as a passive and an active scalar,
respectively. The LES results obtained from the simulations are compared with the
DNS data of Kawamura (2007) and Iida & Kasagi (1997), which are available from
their websites (henceforth, designated as K-2007 and IK-1997, respectively). Turbulent
flows under unstable stratification are of great interest and importance to mechanical
engineers, meteorologists and oceanographers. These flows are characterized by the
formation of large-scale longitudinal coherent structures, which interact actively
with near-wall turbulence. A detailed discussion of the characteristic features of the
turbulent thermal flow fields and their concomitant large vortical structures obtained
using LES will be provided in §4.

Figure 2 shows the geometry of the computational domain, which has dimensions
L1 × L2 × L3 = 5πδ × 2δ × 2πδ in the streamwise (x1), wall-normal (x2) and spanwise
(x3) directions, respectively. Here, the half-channel width δ is 40 mm. The flow is

characterized by a Reynolds number Reτ
def
= uτ δ/ν = 150. Here, uτ represents the wall

friction velocity. Table 2 summarizes the sixteen test cases conducted here. Because
the momentum and scalar transport processes are coupled, the resolved velocity and
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Test case SGS HF model SGS stress model Gr Grid Type of scalar
Case 1 EDM DM 1.3 × 106 48 × 32 × 48 Active
Case 2A DM 1.3 × 106 48 × 32 × 48 Active
Case 2B 48 × 32 × 48
Case 2C GGM 1.3 × 106 32 × 24 × 32 Active
Case 2D DNM 48 × 32 × 48 Passive
Case 2E 4.8 × 106 48 × 32 × 48 Active
Case 3A DM 1.3 × 106 48 × 32 × 48 Active
Case 3B 48 × 32 × 48
Case 3C LGGM 1.3 × 106 32 × 24 × 32 Active
Case 3D DNM 48 × 32 × 48 Passive
Case 3E 4.8 × 106 48 × 32 × 48 Active
Case 4A DM 1.3 × 106 48 × 32 × 48 Active
Case 4B 48 × 32 × 48
Case 4C QGGM 1.3 × 106 32 × 24 × 32 Active
Case 4D DNM 48 × 32 × 48 Passive
Case 4E 4.8 × 106 48 × 32 × 48 Active

Table 2. Summary of 16 test cases for the validation of the GGM, LGGM and QGGM
(Reτ = 150).

temperature fields are influenced by both the SGS stress and HF models. Therefore,
in order to evaluate the performance of the proposed GGM, LGGM and QGGM,
they are tested with the temperature being treated both as an active and a passive
scalar, and are compared with respect to the same SGS stress model (either the DM
or DNM). To examine the effects of buoyancy on the heat and fluid flow, two Grashof
numbers (i.e. Gr = 1.3×106 and 4.8×106) are tested. The Grashof number is defined
as Gr

def
= gβ�θ(2δ)3/ν2, where �θ = θwh − θwc is the temperature difference between

the hot and cold walls.
In order to examine the effect of the grid resolution on the LES results, two coarse

grid systems with 48 × 32 × 48 and 32 × 24 × 32 control volumes, have been used
to discretize the computational domain. Although both systems are coarse grids,
for convenience we will subsequently refer to them as the ‘fine’ and ‘coarse’ grid
systems, respectively. Both grid systems are uniform in the streamwise and spanwise
directions, and are refined using a hyperbolic-tangent function in the wall-normal
direction within the near-wall region. Owing to the dynamic procedure, empirical wall
functions are not required for the SGS stress and HF models when they are applied
in the near-wall regions.

The governing equations were discretized using a finite volume method. The filtered
momentum equations were solved using a fractional-step method. The nonlinear
advection term was discretized using a second-order explicit Adams–Bashforth
scheme and the viscous diffusion term was discretized using a second-order
Crank–Nicolson scheme (Kim & Moin 1985). The pressure correction equation was
solved using a multigrid method, and checkerboard oscillations in the pressure field
arising from a state of pressure–velocity decoupling on the collocated grid were
removed using a nonlinear momentum interpolation scheme (Rhie & Chow 1983).
To solve the filtered thermal energy equation, a fourth-order Runge–Kutta method
was used to advance the temperature field over a single time step. The time period
used to obtain the turbulent flow and temperature statistics was based on 50 000
time steps after the flow became fully developed. In the presentation of the results,
quantities non-dimensionalized using the friction velocity uτ and friction temperature
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Figure 3. Velocity field and isopleths of the resolved temperature field. (x2, x3)-view
at x1/L1 ≈ 0.5, predicted using GGM and DNM, Gr = 1.3 × 106, grid resolution:
48 × 32 × 48, temperature is normalized using the temperature difference between the two
walls. (a) Time-averaged field, (b) instantaneous field.

θτ
def
= qw/(ρcP uτ ) are denoted with a superscript +. Here, qw is the wall heat flux and

cP is the specific heat at constant pressure.

4. Results and analysis
In this Section, we analyse the numerical results obtained using the proposed SGS

HF models, in terms of the observed large longitudinal vortex rolls, mean and variance
of the temperature and velocity fields, shear stress and heat flux budgets, and forward
and backward scatter of local kinetic and scalar energy fluxes between the resolved
and subgrid scales.

4.1. Resolved velocity and temperature fields

Figures 3(a) and 3(b) show the time-averaged and instantaneous velocity fields and
isopleths of the resolved temperature field in the (x2, x3)-plane at the streamwise
location x1/L1 ≈ 0.5 for the unstably stratified plane channel flow. These results
were predicted using the GGM in conjunction with the DNM. From figure 3(a), the
time-averaged velocity field exhibits two large symmetrical longitudinal vortex rolls
with axes aligned along the streamwise direction. This results in a downdraught in
the central region and two updraughts in the peripheral regions. These longitudinal
vortex rolls are a consequence of the joint effects of buoyancy and the streamwise
pressure gradient, and give rise to a characteristic pattern of organized secondary flow
structures that is consistent with the experimental observations of Fukui, Nakagima
& Ueda (1991). The large longitudinal vortex rolls have a significant impact on the
spatial transport of momentum and thermal energy. Parcels of cold fluid in a layer at
the upper wall are entrained into the vortex rolls in the downdraught region, whereas
parcels of hot fluid in a layer at the lower wall are entrained into the vortex rolls in
the updraught regions resulting in the vigorous mixing of hot and cold fluid parcels.
In contrast to the time-averaged fields, the instantaneous velocity and thermal fields
displayed in figure 3(b) show ejections and sweeps of irregular large flow structures
(as marked by the various temperature isopleths) between the near-wall and outer
flow regions.

In order to determine if the proposed SGS HF models are sensitive to the existence
of buoyancy, temperature is treated both as an active and a passive scalar in the tests.
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Figure 4. Velocity profiles predicted using three proposed SGS HF models with temperature
treated as an active or a passive scalar (SGS stress model: DNM; Gr = 1.3 × 106; grid
resolution: 48 × 32 × 48). K-2007: DNS dataset for neutrally stratified flow; IK-1997: DNS
data for both passive and active scalars. (a) Active scalar, (b) passive scalar.
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Figure 5. Comparison of the temperature profiles predicted using three proposed SGS HF
models with the temperature treated as an active or a passive scalar (SGS stress model: DNM;
Gr = 1.3 × 106; grid resolution: 48 × 32 × 48).

For the active scalar test cases, the temperature and velocity fields are coupled and
the buoyant force contributes to the momentum transport process. However, for the
passive scalar test cases, the buoyancy term is absent from the momentum equation
(cf. (2.2)), and consequently, the velocity field is decoupled from the temperature field
and the flow becomes neutrally stratified. From figures 4(a), 4(b) and 5, it is seen
that for both the active and passive scalar test cases, the model predictions of the
time- and plane-averaged streamwise velocity and temperature profiles conform well
with the reported DNS data of Kawamura (2007) and Iida & Kasagi (1997). The
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Figure 6. Mean profiles of the resolved streamwise velocity (Gr = 1.3 × 106).

large organized longitudinal vortex rolls as shown in figure 3 are characteristic of
an unstably stratified channel flow for which the temperature functions as an active
scalar. These large longitudinal vortex rolls have a significant impact on both the
predicted velocity and temperature profiles. As shown in figures 4 and 5, owing to the
existence of these vortex rolls, the momentum and thermal boundary layers evolve
much faster in the active scalar case than in the passive scalar case. Correspondingly,
for the active scalar case, the flow field is more turbulent and the turbulent diffusion
of the scalar (temperature) is more effective in the wall-normal direction.

Figure 6 shows the mean resolved streamwise velocity profiles (i.e. 〈ū1〉) predicted
by the three proposed SGS HF models for the benchmark test case of Gr = 1.3×106

using two grid systems. These velocity profiles are compared with those obtained using
the conventional EDM and with DNS data of Iida & Kasagi (1997). The empirical
law of the wall for a neutrally stratified flow is also displayed for reference purposes.
As evident from figures 4 and 5, because the time- and plane-averaged streamwise
velocity and temperature profiles are symmetrical in the wall-normal direction, we
only show one-half of the complete velocity profiles using the wall coordinates in the
hot-wall region. For a given fixed grid system, the predicted values of the wall friction
velocity uτ and temperature θτ vary slightly between the different SGS modelling
approaches. Therefore, the profiles of a physical quantity (e.g. the mean velocity,
temperature and turbulent intensities) predicted using different SGS models, when
displayed using the wall coordinates, are expected to be different, which reflects the
differences in the predictive accuracy of the SGS HF models in the near-wall region.
As shown in figure 6, owing to the existence of the buoyancy, the predicted mean
velocity profiles deviate from the familiar log law. A comparison of the ten different
SGS model combinations tested suggests that the predictions of 〈ū1〉 obtained using
the DNM conform better with the DNS data than predictions obtained using the
DM. Interestingly, the coarse grid prediction based on the DNM is even better than
the fine grid prediction based on the DM.
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Figure 7. Effect of Grashof number on the mean resolved streamwise velocity profile (SGS
stress model: DNM; grid resolution: 48 × 32 × 48).

Figure 7 demonstrates the effects of buoyancy on the resolved velocity profile
predicted using the three proposed SGS HF models (in conjunction with the DNM).
From figure 7, it is seen that the performance of the GGM, LGGM and QGGM
is similar at the two different Grashof numbers. As Grashof number increases, the
non-dimensionalized streamwise velocity shifts downwards in response to the increase
in the buoyancy, which is consistent with the observation of Iida & Kasagi (1997).

Figure 8 compares the predicted resolved turbulence intensities (or root-mean-
square (RMS) values, which are defined as ū+

i,rms

def
= 〈((ūi − 〈ūi〉)/uτ )

2〉1/2 for i = 1, 2
and 3) with the DNS data. As for the case of the mean resolved streamwise velocity
profiles, under exactly the same test condition, the predictions of ūi,rms using the DNM
are generally in better agreement with the DNS data than those obtained using the
DM, especially in terms of the streamwise component. Because resolved turbulence
intensities are important physical quantities and of great interest to researchers, it
is popular in the literature to compare directly the values of turbulence intensities
obtained from LES and DNS approaches, especially when different LES test cases are
investigated under the same test condition. However, as pointed out by Winckelmans,
Jeanmart & Carati (2002), one should expect to observe differences in the predicted
values of the turbulence intensities obtained from LES and DNS, owing to the fact
that conventional LES provides only a model for the trace-free SGS stress tensor
(namely the information embodied in the diagonal components τii (no summation on
the repeated subscript) of the SGS stress tensor is not available). For a conventional
LES approach, the prediction of the normal components of the Reynolds stress
tensor (turbulence intensities) is influenced by the modelled SGS stresses and the
grid resolution used. To demonstrate this, we compare in figure 9 the prediction
of the resolved streamwise turbulent intensity ū+

1,rms based on two different grid
resolutions. As expected, for all the three tested SGS HF models, the prediction of
ū+

1,rms based on the coarser grid is less satisfactory in comparison with the DNS results,
demonstrating the effects of the grid resolution on the LES prediction of resolved
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Figure 8. Resolved turbulence intensities (Gr = 1.3 × 106; grid resolution: 48 × 32 × 48).
(a) Streamwise component, (b) wall-normal component, (c) spanwise component.

turbulent intensities. Figure 9 also shows the results for LES without SGS stress and
HF models for both grid systems. As expected, the predictions from LES without
SGS models are poorer in comparison to those obtained with SGS models at both
the coarse and fine grid resolutions, indicating that the SGS models utilized in the
simulations are properly capturing (approximately or better) the physics associated
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Figure 9. Resolved streamwise turbulent intensity predicted using two different grid
resolutions (SGS stress model: DNM; Gr = 1.3 × 106).

with subgrid-scale motions of the flow. This is consistent with the observation of
Ghosal & Rogers (1997), who studied a turbulent plane wake flow using LES with
and without SGS stress models.

However, it should be indicated here that although the method of LES without
SGS models is useful in demonstrating the SGS effects in a qualitative manner, it is
an unphysical simulation in the context of a conventional LES (in contrast to the
approach of a monotonically integrated large eddy simulation (MILES) which does
not rely on explicit SGS modelling (Fureby & Grinstein 1999)). Given the coarse
resolutions used in LES, the method of LES without SGS models is neither an LES
nor a DNS (because DNS requires the finest turbulent motions at the Kolmogorov
scale to be resolved, temporally and spatially, and LES necessarily gives rise to
SGS stresses which cannot generally be ignored). As a consequence, there is no
strict justification that the results obtained from the conventional LES without SGS
models necessarily represent realistic turbulence that can be unambiguously compared
with turbulence data obtained from experiments or DNS. Furthermore, as noted by
Vreman (2004), LES without SGS models can be numerically unstable because it is
possible for TKE to gradually pile up at the high-wavenumber cutoff without an
SGS stress model, eventually leading to numerical instability or even divergence in
the simulations.

Figure 10 compares the profiles of the mean resolved temperature predicted by the
different SGS models based on two grid systems. Although slight differences exist,
the LES predictions are generally consistent with the DNS result. Owing to the effect
of buoyancy, the mean temperature profile deviates from the conventional law-of-
the-wall relationship. Of the ten test cases shown in the figure, predictions obtained
using the various SGS HF models in conjunction with the DM all slightly overpredict
the temperature in comparison with the DNS data. Figure 11 displays the effects of
buoyancy on the resolved temperature distribution. The predictive performances of
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Figure 11. Effect of Grashof number on the mean resolved temperature profile (SGS stress
model: DNM; grid resolution: 48 × 32 × 48).

the GGM, LGGM and QGGM are, in general, similar for the two tested Grashof
numbers. By comparing figures 7 and 11, it is observed that for an unstably stratified
turbulent channel flow, the effect of buoyancy on the mean temperature profile is
analogous to that on the mean velocity profile. As the Grashof number increases from
1.3 × 106 to 4.8 × 106, the non-dimensionalized temperature profiles shift downwards
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Figure 12. Profiles of the root-mean-square of the resolved temperature fluctuations
(Gr = 1.3 × 106; grid resolution: 48 × 32 × 48).

due to an increased buoyancy and increases in the values of the wall heat flux and
wall friction temperature (on noting that 〈θ̄〉+ = 〈θ̄〉/θτ with θτ

def
= qw/(ρcP uτ )).

Figure 12 displays the resolved temperature fluctuation (RMS of θ̄ ): θ̄+
rms

def
=

〈((θ̄ − 〈θ̄〉)/θτ )
2〉1/2. In conformance with previous observations, when compared with

the DNS data, the combinations of SGS HF models with the DNM generally
provide better predictions of the RMS temperature fluctuations than those with the
DM, especially in the buffer layer. This indicates that for LES of scalar (thermal
energy) transport, it is beneficial to use an advanced SGS stress model (such as the
DNM) in the filtered momentum equation to obtain a more accurate velocity field,
because this leads subsequently to an improved prediction of the scalar (temperature)
field. This conclusion is not surprising because for both active and passive scalars,
the resolved velocity field plays a critical role in the scalar dispersion through the
advection term appearing in (2.3). From figure 12, it is also observed that predictions
obtained using the LGGM and QGGM are in better agreement with the DNS data
than those obtained using the GGM (when they are tested in conjunction with the
DNM), especially in the buffer layer. It should be noted that there are two types
of SGS models involved in LES of thermal flows; namely, the SGS stress and HF
models. For the test case adopted, resolved flow field quantities such as the turbulent
velocity intensities are more sensitive to the SGS stress models (the effect of SGS stress
modelling is evident in figure 8). In contrast, resolved temperature field quantities
such as the RMS temperature fluctuations are more sensitive to the SGS HF model
(the effect of SGS HF modelling is evident in figure 12).

4.2. Budgets of shear stresses and heat fluxes

In order to investigate the performance of our proposed GGM, LGGM and QGGM
in terms of the momentum and thermal energy balances, we examined the budgets of
the shear stresses and heat fluxes across the channel. For LES of a channel flow, an
instantaneous filtered quantity can be decomposed into a time- and plane-averaged
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Figure 13. Budget of non-dimensionalized wall-normal shear stresses at different grid
resolutions (a) 48 × 32 × 48, (b) 32 × 24 × 32 (SGS stress model: DNM; SGS HF model:
LGGM; Gr = 1.3 × 106; location for the instantaneous SGS shear stress distribution is:
x1/L1 = x3/L3 ≈ 0.5).

component and a residual component as

φ̄ = 〈φ̄〉 + φ̄′′. (4.1)

On assuming that the flow is statistically stationary and homogeneous in the (x1,
x3)-plane, an equation that balances the time- and plane-averaged shear stresses at
an arbitrary wall-normal location x2 is obtained by substituting (4.1) into the filtered
streamwise momentum equation and then integrating the resulting equation from 0
to x2 in the wall-normal direction to give

ν
∂〈ū1〉
∂x2

− 〈ū′′
1ū

′′
2〉 − 〈τ12〉 =

1

ρ

∂〈p̄〉
∂x1

x2 +
τwh

ρ
. (4.2)

The three terms on the left-hand side of (4.2) represent the resolved viscous shear
stress, resolved turbulent shear stress, and SGS shear stress, respectively. The two
terms on the right-hand side of the equation represent the resolved integrated shear
force due to the mean pressure gradient, and the resolved viscous shear stress at the
hot wall (τwh = ρν(∂〈ū1〉/∂x2) |x2=0), respectively.

Figures 13(a) and 13(b) show the shear stress budget predicted using the DNM
and LGGM at two different grid resolutions. All the terms shown in the figures are
non-dimensionalized using the wall shear stress term (i.e. τw/ρ = u2

τ ). Although two
assumptions were used in the derivation of (4.2) from the filtered momentum equation,
the balance expressed by this equation is consistent with the results obtained from the
numerical simulation. As evident in both figures 13(a) and 13(b), the total shear stress
calculated from the left-hand side of (4.2) agrees very well with that calculated from
the right-hand side of the equation at both grid resolutions. In general, the magnitude
of the time- and plane-averaged SGS shear stress component 〈−τ12〉 is smaller than
those of the other shear stress components. However, as shown in figures 13(a) and
13(b), the instantaneous value of the SGS shear stress −τ12 (shown using the dashed
line) can be significant at a specific location (e.g. at points along the vertical line
determined by the intersection of the two planes at x1/L1 ≈ 0.5 and x3/L3 ≈ 0.5).
By comparing figures 13(a) and 13(b), it is seen that both the instantaneous and
time- and plane-averaged SGS shear stress components become larger as the grid
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Figure 14. Predicted Reynolds shear stress displayed using wall coordinates
(Gr = 1.3 × 106; grid resolution: 48 × 32 × 48).

resolution becomes coarser. As for the case of the LGGM, the GGM and QGGM
also successfully predicted the shear stress budget (not shown) at the two different
grid resolutions used here.

As demonstrated by Winckelmans et al. (2002) (see also Sagaut 2002), the time-
and plane-averaged deviatoric part of the ‘true’ (or exact) Reynolds stresses (denoted
using 〈u′e

i u′e
j 〉) obtained from a DNS approach can be estimated by LES using the

resolved turbulent and SGS stresses, i.e. 〈u′e
i u′e

j 〉 ≈ 〈ū′′
i ū

′′
j 〉 + 〈τij 〉. Figure 14 compares

the Reynolds shear stresses (i.e. −〈ū′′
1ū

′′
2〉+ − 〈τ12〉+) predicted using three SGS HF

models (in conjunction with the DM and DNM) with the DNS results (i.e. −〈u′e
1 u′e

2 〉+).
Consistent with our previous observations, use of the DNM for modelling the SGS
stress tensor gives predictions of the resolved turbulent shear stress that conform
better with the DNS data. Figures 15(a) and 15(b) show the budget the Reynolds
stresses (predicted using the DNM and LGGM) in comparison with the DNS data of
the hot-wall region at two different grid resolutions. As the grid resolution becomes
coarser, the SGS effects of course become more significant. As shown in the figure 15,
the SGS shear stress component contributes considerably to the total budget of the
predicted Reynolds stress. The maximum value of the ratio between the time- and
plane-averaged SGS and total Reynolds shear stresses (i.e. −〈τ12〉/(−〈ū′′

1ū
′′
2〉 − 〈τ12〉)),

is 7.4% and 14.9% for the fine and coarse grid systems, respectively.
Following a procedure similar to that used for deriving (4.2), the time- and plane-

averaged equation expressing the balance in the mean wall-normal heat fluxes at
any arbitrary wall-normal location x2 can be obtained from the filtered energy
equation (2.3):

−α
∂〈θ̄〉
∂x2

+ 〈ū′′
2 θ̄

′′〉 + 〈h2〉 =
qwh

ρcP

, (4.3)

where qwh
def
= −λ(∂〈θ̄〉/∂x2) |x2=0 is the resolved molecular heat flux at the hot wall, and

λ is the thermal conductivity. The three wall-normal HF components on the left-hand
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side of (4.3) correspond to the resolved molecular heat flux, resolved turbulent heat
flux, and SGS heat flux, respectively. Figure 16 displays the budget of the wall-normal
heat flux terms predicted by the GGM (in conjunction with the SGS stress model
DNM) for two different Grashof numbers. All the terms shown in the figure are
non-dimensionalized by the molecular heat flux at the hot wall, i.e. qwh/ρcp = uτhθτh.
With this special normalization, the total heat flux given by the right-hand side of
(4.3) becomes unity. As shown in figures 16(a) and 16(b), the GGM provides a good
balance of the wall-normal heat fluxes at both Grashof numbers, since it is evident
from these figures that the total heat flux calculated from the left-hand side of (4.3)
agrees well with the theoretical value of 1.0. Figures 16(a) and 16(b) also show that
the instantaneous values of the wall-normal SGS HF h2 can fluctuate locally with
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Figure 17. Total turbulent heat fluxes displayed using wall coordinates (Gr = 1.3 × 106; grid
resolution: 48 × 32 × 48). (a) Streamwise component, (b) wall-normal component.

a relatively large amplitude (e.g. at points along the vertical line determined by the
intersection of two planes at x1/L1 ≈ 0.5 and x3/L3 ≈ 0.5, shown using a dashed
line) in contrast to the time- and plane-averaged values 〈h2〉. As in the case of the
GGM exhibited in figures 16(a) and 16(b), the LGGM and QGGM also successfully
predicted the heat flux budget (not shown) at both Grashof numbers.

The time- and plane-averaged value of the ‘true’ (or exact) turbulent heat flux
(denoted by 〈u′e

j θ ′e〉) obtained from a DNS approach can be estimated by LES using

the resolved turbulent and SGS heat fluxes, i.e. 〈u′e
j θ ′e〉 ≈ 〈ū′′

j θ̄
′′〉 + 〈hj 〉. Figures 17(a)

and 17(b) show the total streamwise and total wall-normal turbulent heat fluxes
(i.e. 〈ū′′

1 θ̄
′′〉+ + 〈h1〉+ and 〈ū′′

2 θ̄
′′〉+ + 〈h2〉+, respectively) using wall coordinates in

comparison with the DNS results (i.e. 〈u′e
1 θ ′e〉+ and 〈u′e

2 θ ′e〉+, respectively). Although
the performance of the seven SGS model combinations is very similar in terms of their
predictions of the wall-normal turbulent HF component (cf. figure 17(b), all of which
are in good agreement with the DNS results), distinct differences exist between their
predictions of the streamwise turbulent HF component (cf. figure 17a). Once again, it
is observed that use of the DNM gives predictions of the total streamwise turbulent
HF that are in better agreement with the DNS data. Furthermore, figure 17(a) shows
that for the three proposed models, use of the LGGM and QGGM for modelling the
SGS HF yields predictions of the total streamwise HF that conform slightly better
with the DNS data than that provided by the GGM (in the context of using the
DNM for modelling of the SGS stresses, shown using the solid symbols in figure 17a).

4.3. SGS effects on local kinetic and scalar energy fluxes

In the previous Subsection, we have examined the basic physical features of the
instantaneous and time- and plane-averaged velocity and temperature fields at both
the resolved and subgrid scale levels. In this Subsection, we investigate the local kinetic
energy (KE) and scalar energy (SE) transfer between the resolved and subgrid scales,
which characterizes the physical interaction between these two scales of motions and
also reflects the SGS effects related to the SGS stress and HF models.

4.3.1. SGS effects on the budget of the kinetic energy of the filtered flow

The filtered kinetic energy (defined as E
def
= 1

2
uiui) of the flow can be decomposed as

E = kr + ksgs, (4.4)
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Figure 18. Budget of the time- and plane-averaged resolved KE 〈kr〉 of the resolved
velocity field in the wall-normal direction at different grid resolutions (a) 48 × 32 × 48,
(b) 32 × 24 × 32 (SGS stress model: DNM; SGS HF model: LGGM; Gr = 1.3 × 106).
Convection: 〈Con〉 = ∂

∂x2
〈ū2kr〉; viscous diffusion: 〈Dvis〉 = ∂

∂x2
〈2νS̄i2ūi〉; pressure diffusion:

〈Dpres〉 = 1
ρ

〈ūj
∂p̄

∂xj
〉; SGS diffusion: 〈Dsgs〉 = ∂

∂x2
〈τ ∗

i2ūi〉; SGS dissipation: 〈Pr〉 = 〈−τ ∗
ij S̄ij 〉;

viscous dissipation: 〈εr〉 = 〈2νS̄ij S̄ij 〉; buoyancy term: 〈Br〉 = 〈−βgū2(θ̄ − Θr )〉. All quantities
shown in the figures are non-dimensionalized using a constant wall dissipation rate:
ε′
wall = u4

τ /ν.

where kr
def
= 1

2
ūi ūi is the resolved KE of the resolved (or filtered) velocity field, and

ksgs
def
= 1

2
τii = 1

2
(uiui − ūi ūi) is the SGS KE. Following Pope (2000), it can be shown

that the transport equation for kr takes the following form in the context of an
incompressible thermal flow:

Dkr

Dt
=

∂(Fij ūi)

∂xj

− εr − Pr − Br, (4.5)

where
D(·)
Dt

def
=

∂(·)
∂t

+ ūj

∂(·)
∂xj

represents the material derivative of a variable, Fij
def
= 2νS̄ij − τ ∗

ij − (p̄/ρ)δij is the

stress term, εr
def
= 2νS̄ij S̄ij , Pr

def
= −τ ∗

ij S̄ij and Br
def
= βgiūi(θ̄ − Θr ). The four terms on

the right-hand side of (4.5) represent the rates of the stress diffusion, resolved viscous
dissipation, SGS dissipation and buoyancy production/suppression (depending on
its sign) of the resolved KE kr , respectively.

Assuming that the flow field is steady and homogeneous in the (x1, x3)-plane, the
following equation can be derived from (4.5), which breaks down the budget of the
time- and plane-averaged 〈kr〉 in the wall-normal (x2) direction:

〈Con〉 = 〈Dvis〉 − 〈Dsgs〉 − 〈Dpres〉 − 〈εr〉 − 〈Pr〉 − 〈Br〉, (4.6)

where 〈Con〉 def
= (∂/∂x2)〈ū2kr〉 is the averaged resolved convection term, 〈Dvis〉

def
=

(∂/∂x2)〈2νS̄i2ūi〉 is the averaged resolved viscous diffusion term, 〈Dsgs〉
def
=

(∂/∂x2)〈τ ∗
i2ūi〉 is the averaged SGS diffusion term, 〈Dpres〉

def
= (1/ρ)〈ūj (∂p̄/∂xj )〉 is the

averaged resolved pressure diffusion term, and 〈εr〉, 〈Pr〉 and 〈Br〉 are the averaged
resolved viscous dissipation, SGS dissipation and averaged resolved buoyancy
production/suppression terms, respectively. Figures 18(a) and 18(b) show the budget
of 〈kr〉 predicted using the DNM and LGGM at two different grid resolutions. Both
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Figure 19. Comparison of the three kr diffusion terms related to the stress Fij (SGS

stress model: DNM; SGS HF model: LGGM; Gr = 1.3 × 106; grid resolution:
32 × 24 × 32). Time- and plane-averaged values: solid lines. Instantaneous values: dashed
line. Location for the instantaneous distribution of the SGS KE diffusion rate is:
x1/L1 = x3/L3 ≈ 0.5. (a) Non-dimensionalized using a constant wall dissipation rate
ε′
wall = u4

τ /ν, (b) non-dimensionalized using the averaged local viscous diffusion rate 〈Dvis〉.

figures show that the resolved viscous diffusion and dissipation terms (i.e. 〈Dvis〉 and
〈εr〉, respectively) dominate the other terms in the near-wall region, and these two
terms balance each other in the vicinity of the wall (i.e. 〈Dvis〉wall = 〈εr〉wall). Note that
all the quantities shown in these two figures are non-dimensionalized using a constant

wall dissipation rate defined as ε′
wall

def
= u4

τ /ν ≈ 2ν[〈S̄ij 〉〈S̄ij 〉]wall , where the resolved

friction velocity is calculated as uτ =
√

ν(∂〈ū1〉/∂x2)wall (see Wang et al. (2008) for
the near-wall approximation of 〈S̄ij 〉). The time- and plane-averaged resolved viscous
dissipation term shown in figure 18 is 〈εr〉 = 2ν〈S̄ij S̄ij 〉. The Cauchy–Schwartz
inequality implies that 〈εr〉wall � ε′

wall holds in the numerical calculation. Therefore,
it is seen in figures 18(a) and 18(b) that 〈εr〉wall/ε

′
wall � 1. These figures also show

that the influence of buoyancy on the budget of 〈kr〉 is small in comparison with the
other terms. In the central region of the channel, the resolved pressure diffusion term
is the dominant term on the right-hand side of (4.6) which is primarily balanced the
resolved convection term. The local pressure diffusion rate is mainly attributed to the
local mean driving force, namely the mean streamwise pressure gradient component.
The SGS effects embodied in the two SGS terms (i.e. the SGS diffusion and SGS
dissipation) are finite, and become stronger as the grid resolution becomes coarser.
In the remainder of this Subsection, we will further analyse the magnitudes of the
SGS diffusion and dissipation terms in comparison with those of the other terms in
order to quantify the SGS effects on the budget of KE of the filtered flow.

Figures 19(a) and 19(b) compare the time- and plane-averaged magnitudes of the
three kr diffusion terms related to the stress Fij ; namely, the resolved viscous diffusion
(i.e. 〈Dvis〉), pressure diffusion (i.e. 〈Dpres〉) and SGS diffusion (i.e. 〈Dsgs〉) terms. The
results shown in these figures are based on the coarse grid resolution. In order to
compare the wall-normal distribution and relative magnitude of these three stress
diffusion terms in both the near-wall and central core regions, the quantities shown in
figures 19(a) and 19(b) were normalized using a constant wall dissipation rate ε′

wall and
the time- and plane-averaged local resolved viscous diffusion rate 〈Dvis〉, respectively.
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From figure 19(a), it is observed that the viscous diffusion plays a dominant role in
the near-wall region for x2/δ ≈ 0–0.2 and 1.8–2.0 (or for x+

2 = 0–30). The pressure
diffusion terms dominate the central core region for x2/δ ≈ 0.2–1.8 (or x+

2 > 30).
Also from the figure, it is observed that the instantaneous value of SGS diffusion Dsgs

fluctuates with a large amplitude. The averaged value of 〈Dsgs〉 attains its maximum
negative value in the buffer region with a magnitude of 〈Dsgs〉/ε′

wall ≈ −0.11 at
x2/δ ≈ 0.08 and 1.92 (or x+

2 ≈ 12). Considering that the resolved viscous dissipation
rate 〈εr〉 reaches its maximum value at the wall (which is comparable to the value of
ε′

wall , see figure 18), the SGS effects represented by the instantaneous and averaged
values of Dsgs (non-dimensionalized using ε′

wall) are significant. Figure 19(b) further
shows that in the central core of the channel, the magnitudes of the resolved pressure
diffusion and SGS diffusion terms are much larger than the viscous diffusion term
(i.e. unity after being non-dimensionalized by 〈Dvis〉). For instance, at x2/δ ≈ 1,
〈Dpres〉/〈Dvis〉 ≈ 61.0 and 〈Dsgs〉/〈Dvis〉 ≈ −6.31, respectively. In other words, at
the central core of the channel, the absolute magnitude of the SGS diffusion term
is approximately 10.3% of the resolved pressure diffusion term, the latter being the
dominant term in the budget of 〈kr〉 here.

The SGS dissipation rate Pr represents an inertial inviscid local KE flux between
the resolved and unresolved (subgrid) scales. It represents the rate of KE production
and functions as a source of KE for the residual SGS motions and a sink of KE for
the large resolved-scale motions. The instantaneous value of Pr can be either positive
or negative, representing a local forward or backward KE flux between the resolved
and subgrid scales, respectively. By definition, the value of Pr directly depends on
the SGS stress model, rather than the SGS HF model. In consequence, predictions
of this quantity obtained from the three proposed SGS HF models, combined with
the same DNM for modelling the SGS stress, are similar. In order to elucidate the
physics of the local KE transfer between resolved and subgrid scales, we show in
figure 20 the time- and plane-averaged value of Pr predicted using the DNM and
LGGM. The forward scatter (i.e. 〈P +

r 〉) and backscatter (i.e. 〈P −
r 〉) of KE have been

separated. Naturally, these two quantities must verify 〈Pr〉 = 〈P +
r 〉 + 〈P −

r 〉. From
figure 20, it is observed that the DNM (in conjunction with the LGGM) is capable of
simulating the backscatter of KE. In contrast, owing to the simplicity and limitation
of the constitutive relation inherent in the DM (which requires that the principal axes
of −τ ∗

ij be aligned with those of S̄ij ), none of the combinations of the SGS models
based on the DM (not shown) can successfully predict the net effect of backscatter in
a time- and plane-averaged sense. This is consistent with the previous observations
of Wang & Bergstrom (2005) and Wang et al (2006a) based on an LES study of
turbulent Couette channel flows.

The SGS KE dissipation rates shown in figure 20 are normalized by the constant
resolved viscous wall dissipation rate ε′

wall = u4
τ /ν, which is useful for demonstrating

the general wall-normal distribution pattern of the SGS dissipation rates. However,
because the resolved viscous wall dissipation rate reaches its maximum value at the
wall with a very large magnitude (see figure 18), the value of the SGS KE dissipation
rate (after being non-dimensionalized by ε′

wall) is typically very small. For instance, as
shown in figure 20, the level of non-dimensionalized forwardscatter is approximately
0.014 for the fine grid system and 0.041 for the coarse grid system (not shown) at the
peak location (for the case of Gr = 1.3 × 106 based on the combination of the DNM
and LGGM).

In order to clearly demonstrate the relative strength of the SGS KE dissipation rate
in the central core of the channel, it is beneficial to normalize its value using the local
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Figure 20. Time- and plane-averaged SGS KE dissipation rates for different Grashof numbers
(SGS stress model: DNM; SGS HF model: LGGM; Gr = 1.3 × 106; grid resolution:
48 × 32 × 48). Non-dimensionalized using a constant wall dissipation rate ε′

wall = u4
τ /ν.

Total SGS KE dissipation: 〈Pr〉/ε′
wall; forwardscatter: 〈P +

r 〉/ε′
wall; backscatter: 〈P −

r 〉/ε′
wall .

viscous dissipation rate. Furthermore, the ratio between the SGS and resolved viscous
dissipation rates (i.e. σ0

def
= Pr/εr and σ

def
= 〈Pr〉/〈εr〉) has a special physical meaning. In

the context of the conventional SGS eddy viscosity (Smagorinsky) modelling approach
(see §2.1), this ratio can be simplified to σ0 = νsgs/ν. For a general non-eddy-viscosity
SGS stress model (e.g. the DNM), the concept of SGS eddy viscosity is not directly
applicable; however, in the context of time- and plane-averaging, we can define the
averaged effective SGS eddy viscosity as follows: νe

sgs

def
= 〈Pr〉/〈2S̄ij S̄ij 〉 = 〈Pr〉/〈|S̄|2〉.

As such, for the DNM, σ = 〈Pr〉/〈εr〉 = νe
sgs/ν. From figure 21, it is observed that

the value of the effective SGS-to-molecular viscosity ratio σ is sensitive to the grid
resolution. As the grid resolution becomes coarser, the SGS effects become, of course,
more significant. For the coarse grid resolution case shown in the figure, the maximum
value of σ is approximately 0.45. The levels of the forward and backward scatter
of SGS KE are significant, with maximum values of σ+ def

= 〈P +
r 〉/〈εr〉 = 1.46 and

σ − def
= 〈P −

r 〉/〈εr〉 = −1.06, respectively.
In order to evaluate the importance of the SGS effects, it is useful to compare

our results for σ shown in figure 21 with those reported in the literature. It should
be indicated that because the test cases used in this and those reported studies are
different, the comparison to be made here should be interpreted in a qualitative, rather
than quantitative, sense. In their LES study of a turbulent channel flow (Reτ = 180),
Armenio & Sarkar (2002) found that the maximum value of σ is approximately 0.14
for the stably stratified case and 0.17 for the neutrally stratified case. In order to
characterize the degree of the ‘SGS activity’ in their a priori and a posteriori LES
study of a mixing layer flow, Geurts & Fröhlich (2002) introduced the parameter

s
def
=

〈Pr〉
〈Pr〉 + 〈εr〉

=
σ

σ + 1
. (4.7)
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Figure 21. Effects of grid resolution on the SGS KE dissipation rate (SGS stress model:
DNM; SGS HF model: LGGM; Gr = 1.3 × 106). Non-dimensionalized using the time- and
plane-averaged resolved viscous dissipation rate 〈εr〉 = 〈2νS̄ij S̄ij 〉. Total SGS KE dissipation:
〈Pr〉/〈εr〉; forwardscatter: 〈P +

r 〉/〈εr〉; backscatter: 〈P −
r 〉/〈εr〉.

Using this parameter, Broglia, Pascarelli & Piomelli (2003) studied SGS activity of free-
surface duct flows and reported that the values of s (based on volume averaging) were
approximately 0.18, 0.19, and 0.21 for Reτ = 360, 600 and 1000, which correspond to
σ = 0.22, 0.23 and 0.27, respectively. Owing to the coarseness of the grid systems used
in our simulations, the SGS effects shown in figure 21 are significant and generally
comparable to those reported in the literature mentioned above. From this figure, it is
seen that the maximum value of s is 0.31 (corresponding to σ = 0.45). Furthermore,
according to the study of Geurts & Fröhlich (2002) of a temporal mixing layer flow,
for a coarse grid LES, when s < 0.5 (σ < 1), the SGS modelling and numerical
discretization errors in the LES prediction of the resolved TKE are less than 1% of
the comparable quantity extracted using filtered DNS data.

4.3.2. SGS effects on the scalar energy dissipation

In order to further understand the role of a SGS HF model in the scalar transport,
we now focus on discussing the transfer of local resolved ‘scalar energy’ θ̄2 between
the resolved and subgrid scales. Following Jiménez, Valiño & Dopazo (2001), the
equation that governs the transport of the SE at the resolved scale can be derived
from (2.3) as

∂θ̄2

∂t︸︷︷︸
transient

term

+
∂

∂xj

(ūj θ̄
2)︸ ︷︷ ︸

large-scale
convection

= α
∂2θ̄2

∂xj∂xj︸ ︷︷ ︸
molecular
diffusion

− 2α
∂θ̄

∂xj

∂θ̄

∂xj︸ ︷︷ ︸
molecular
dissipation

− 2
∂

∂xj

(θ̄hj )︸ ︷︷ ︸
SGS

diffusion

+ 2hj

∂θ̄

∂xj︸ ︷︷ ︸
SGS

dissipation

. (4.8)

In this equation, the non-negative definite term

Γ
def
= 2α

∂θ̄

∂xj

∂θ̄

∂xj

,
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Figure 22. Time- and plane-averaged SGS SE dissipation rates predicted using different SGS
HF models at the fine grid resolution: 48×32×48 (SGS stress model: DNM; Gr = 1.3×106).
Total: 〈Ξ〉/〈Γ 〉; forwardscatter: 〈Ξ+〉/〈Γ 〉; backscatter: 〈Ξ−〉/〈Γ 〉.

represents the resolved molecular dissipation rate which acts as a sink for the resolved
scalar energy. The term

Ξ
def
= −2hj

∂θ̄

∂xj

, (4.9)

represents the local SE dissipation rate, whose value can be either positive or negative
(following the usual convention, a negative sign is included in the above definition).
If the value of Ξ is positive, it acts as a sink in the resolved SE transport equation
(cf. (4.8)), but as a source in the transport equation of the ‘residual scalar energy’ (or
‘scalar variance’ defined as θ2 − θ̄2) at the subgrid scale (see Jiménez et al. 2001 for
the description of this transport equation). We refer to this case as ‘forwardscatter’
of SE flux. In contrast, if the value of Ξ is negative, it functions as a source in the
resolved SE transport equation (cf. (4.8)) transferring SE from the subgrid to resolved
scales, and we refer to this case as ‘backscatter’ of SE flux.

Figure 22 compares the time- and plane-averaged profiles of the local SE flux
between the resolved and subgrid scales predicted using the three proposed SGS
HF models (in conjunction with the SGS stress model DNM). As in the previous
analysis of the local KE fluxes, the forwardscatter (i.e. Ξ+) and backscatter (i.e.
Ξ−) of the local SE have been separated, with Ξ = Ξ+ + Ξ−. The value of 〈Ξ〉
shown in the figure is non-dimensionalized using the resolved molecular dissipation
rate 〈Γ 〉. This non-dimensionalization (i.e. r0

def
= Ξ/Γ and r

def
= 〈Ξ〉/〈Γ 〉) has a special

physical meaning. In the conventional EDM approach, r0 = αsgs/α, which is the ratio
of the SGS eddy thermal diffusivity to the molecular thermal diffusivity. However,
in the context of a non-eddy-thermal-diffusivity SGS modelling approach (e.g. the
GGM, LGGM and QGGM), the concept of an eddy thermal diffusivity αsgs is not
applicable. Instead, we can define the averaged effective SGS eddy thermal diffusivity

as αe
sgs

def
= 〈Ξ〉/〈2(∂θ̄/∂xj )(∂θ̄/∂xj )〉. So, r = 〈Ξ〉/〈Γ 〉 = αe

sgs/α.
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If the average value of Ξ is negative with a magnitude much larger than Γ such
that the ratio between their time- and volume-averaged values 〈Ξ〉tv/〈Γ 〉tv < −1, the
SE transport system as represented by (4.8) can become numerically unstable due
to excessive backscatter of SE. From figure 22, it is observed that in the wall-normal
direction, the ratio r = 〈Ξ〉/〈Γ 〉 (based on the time- and plane-averaged Ξ and Γ )
ranges from −0.28 (for the GGM) to 0.07 (for the LGGM), which is a relatively small
range necessary for the SE transport process being numerically stable. A perusal
of figure 22 shows that the levels of both the forward and backward scatter of SE
predicted by the GGM are larger than those predicted by the LGGM and QGGM.
For our particular test case, the GGM slightly overpredicts the backscatter of SE. The
net SGS effect on the SE transfer between the subgrid and resolved scales corresponds
to backscatter for the GGM and forwardscatter for the LGGM and QGGM. The
physical features observed here are related to the mathematical property of the tensor
diffusivity inherent in these SGS HF models which we now explore in greater detail.

By comparing the constitutive relations of these three proposed models, it can be
seen that the mathematical properties of their tensor diffusivities (as defined by (2.17),
(2.20) and (2.26), respectively) are different. The trace of the tensor thermal diffusivity
for the GGM (i.e. DG

jk = CθGTτ ∗
jk) is zero, which is similar to the characteristics

of some of the conventional models such as the DHLTDM (i.e. DHL
jk = C ′

θG�̄2S̄jk

with tr(DHL
jk ) ≡ 0) of Peng & Davidson (2002), and the DGM (DDG

jk = Cθ�̄
2Ājk with

tr(DDG
jk ) ≡ 0) of Porté-Agel et al. (2001a,b) and Kang & Meneveau (2002). Because

the tensor thermal diffusivities for these types of SGS HF models (namely, the GGM,
DHLTDM and DGM) are trace-free, they are not positive-definite. Therefore, the
value of Ξ corresponding to these types of models cannot be guaranteed to be
always positive. In contrast, owing to the inclusion of the Kronecker delta, the trace
of the tensor diffusivity of the conventional EDM and the proposed LGGM and
QGGM (i.e. the trace of DE

ij , DL
jk and D

Q
jk , respectively) is positive if Cθ > 0 (for

the EDM) or if Cθp > 0 (for the LGGM and QGGM), negative if Cθ < 0 (for the
EDM) or if Cθp < 0 (for the LGGM and QGGM), and zero if Cθ = 0 (for the
EDM) or if Cθp = 0 (for the LGGM and QGGM). This implies that the value of Ξ

derived from either the EDM, LGGM or QGGM cannot be guaranteed to be always
positive owing to the inherent dynamic modelling procedure (the sign of the model
coefficient is dynamically determined, rather than enforced a priori ). In summary,
owing to the mathematical properties of the tensor thermal diffusivities implicit in
the three proposed SGS HF models, these models are expected to be able to reflect
both forward and backward scatter of local SE between the resolved and subgrid
scales.

Figure 23 shows the spatial distribution of the SGS SE dissipation Ξ obtained using
the LGGM and DNM based on the coarse grid system. The instantaneous and time-
and plane-averaged SGS SE fluxes shown in figure 23(a) are non-dimensionalized
using a characteristic constant molecular dissipation rate based on the wall friction
velocity and temperature, namely,

Γ ′
wall

def
= 2θ2

τ u2
τ /α = 2α

[
∂〈θ̄〉
∂x2

∂〈θ̄〉
∂x2

]
wall

.

From figure 23(a), it is seen that the instantaneous SGS effect as indicated by the
distribution of Ξ along the centreline (located at x1/L1 = x3/L3 ≈ 0.5) is significant,
with a peak value of 28% of Γ ′

wall . As shown in the figure, the time- and plane-
averaged molecular dissipation rate 〈Γ 〉 reaches its maximum value at the wall (it
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Figure 23. Instantaneous and time- and plane-averaged SGS SE dissipation rates at the
coarse grid resolution: 32 × 24 × 32 (SGS stress model: DNM; SGS HF model: LGGM;
Gr = 1.3 × 106). Time- and plane-averaged values: solid lines. Instantaneous values:
dashed line. Location for the instantaneous distribution of the SGS SE dissipation rate
is: x1/L1 = x3/L3 ≈ 0.5. (a) Non-dimensionalized using a constant wall dissipation rate
Γ ′

wall = 2θ2
τ u2

τ /α, (b) non-dimensionalized using the averaged local viscous dissipation rate 〈Γ 〉.

should be noted that Γ ′
wall � 〈Γ 〉wall holds necessarily owing to the Cauchy–Schwartz

inequality). The pattern shown in figure 23(a) is dominated by the large near-wall
molecular dissipation rate. Therefore, in order to clearly demonstrate the SGS effects
on the SE fluxes in the central core of the channel, we show in figure 23(b) the
SGS SE dissipation rate non-dimensionalized using the time- and plane-averaged
local viscous dissipation rate 〈Γ 〉 (which varies spatially with x2). In comparison with
figure 22, it is observed in figure 23(b) that as the grid resolution becomes coarser, the
magnitude of the SGS SE dissipation (both forwardscatter and backscatter) becomes
increasingly larger. As shown in figure 23(b), the maximum values for αe

sgs/α (i.e.
〈Ξ〉/〈Γ 〉), αe+

sgs/α (i.e. 〈Ξ+〉/〈Γ 〉) and αe−
sgs/α (i.e. 〈Ξ−〉/〈Γ 〉) are 0.17, 0.34 and −0.19,

respectively. The SGS effect quantified by the value of αe
sgs/α is comparable to that

reported in Armenio & Sarkar (2002), who observed a maximum for this value of
about 0.1 based on their LES study of a stably stratified turbulent channel flow
(Reτ = 180). However, because the test cases used in Armenio & Sarkar (2002) and
in the current study are different, this comparison of the magnitude of SGS effects
should be viewed in a qualitative, rather than quantitative, sense.

5. Conclusions
The proposed QGGM derived from Noll’s formula provides the most general
representation of the SGS HF for the family of explicit algebraic models that
are functions of the resolved temperature gradient ∂θ̄/∂xj and SGS stress tensor
τij (i.e. hj = f (τij , ∂θ̄/∂xj )). The representation of the SGS HF by the QGGM
is explicit, nonlinear (quadratic), inhomogeneous, complete and irreducible. An
important derivative of the QGGM is the LGGM, which is the full linear tensor
thermal diffusivity SGS HF model based on ∂θ̄/∂xj and τij . A second important
derivative of the QGGM is the GGM, which is a linear homogeneous tensor thermal
diffusivity model that is analogous to the well-known GGDH approach of Daly &
Harlow (1970) as applied within the RANS framework. We demonstrate that the
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proposed GGM, LGGM and QGGM are general linear and nonlinear SGS HF
models which include as special cases a number of previous models such as the EDM
of Moin et al. (1991), DHLTDM of Peng & Davidson (2002), and DFLTDM and
DNTDM of Wang et al. (2007b).

In order to validate the proposed modelling approach, a comparative numerical
study of the predictive performance of a number of SGS stress and HF models has
been conducted with reference to neutrally and unstably stratified horizonal channel
flows. In comparison with the DNS data, it was demonstrated that the GGM, LGGM
and QGGM can successfully reproduce salient features of the resolved fluid and
temperature fields including predictions of the characteristic large longitudinal vortex
rolls, mean and fluctuations of the resolved velocity and temperature, budget of the
shear stresses and heat fluxes, and forward and backward scattering of local kinetic
and scalar energy fluxes. It is observed that in comparison with the conventional DM
of Lilly (1992), use of the DNM for modelling the SGS stress improves predictions
of both the velocity and temperature fields at the resolved scale.

Owing to the coarseness of the grid systems used in the present simulations, the
instantaneous and averaged SGS effects are shown to be important in capturing the
correct physics of the flow. When the DNM is used in conjunction with the LGGM
on the coarse grid, the maximum value of the time- and plane-averaged effective SGS-
to-molecular viscosity ratio (i.e. σ = 〈Pr〉/〈εr〉 = νe

sgs/ν) is approximately 0.45. The
levels of the forward and backward scattered SGS KE are significant, with maximum
values of σ+ = 〈P +

r 〉/〈εr〉 = νe+
sgs/ν = 1.46 and σ − = 〈P −

r 〉/〈εr〉 = νe−
sgs/ν = −1.06,

respectively. At the central core of the channel, the magnitude of the SGS diffusion is
much larger than that of the viscous diffusion, with 〈Dsgs〉/〈Dvis〉 ≈ −6.31, indicating
that the SGS motions play a significant role in the diffusion of the resolved KE
〈kr〉 of the filtered velocity field (even in a time- and plane-averaged sense). The
maximum value of the ratio of the averaged effective SGS thermal diffusivity to the
molecular thermal diffusivity (i.e. αe

sgs/α = 〈Ξ〉/〈Γ 〉) is 0.17 for the coarse grid tested.

In the forward and backward scattering of the SGS SE θ̄2, the maximum value of
this ratio αe

sgs/α can reach 0.34 and −0.19, respectively. The maximum value of the
ratio of the averaged SGS shear stress to the averaged total Reynolds shear stress
(i.e. −〈τ12〉/(−〈ū′′

1ū
′′
2〉 − 〈τ12〉)) is 7.4% and 14.9% for the fine and coarse grid systems,

respectively. Taken together, these results (obtained using the DNM and LGGM)
suggest that the SGS effects in the current simulations are important and need to be
explicitly accounted for in order to obtain the improved prediction accuracy.

On utilization of the DNM for modelling the SGS stress, the predictive performance
of the GGM, LGGM and QGGM is generally comparable for the flow simulated
in this study, although it should be noted that the performance of the LGGM and
QGGM is slightly better than that of GGM (in terms of the predictions of the RMS
of the resolved temperature field θ̄+

rms and the streamwise turbulent heat flux 〈ū′′
1 θ̄

′′〉++
〈h1〉+). With respect to the need for advancing the theory of constitutive relations
for SGS scalar-flux modelling, the three models proposed here are important. Taken
together, these three proposed SGS HF models constitute a useful generalization of
the current state of the art for SGS scalar-flux modelling within the LES context.

Although the matrix system for computing the model coefficients for the QGGM
requires additional numerical operations in comparison with those for the LGGM
and GGM, the computational time for the simulations is still dominated by the
pressure solver and the difference in computational cost is hardly noticeable between
the different SGS HF modelling approaches. However, if attention is focused instead
on the degree of modelling complexity, on the mathematical properties of the tensor
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thermal diffusivity, on the level of forward and backward scatter of SGS scalar energy,
and on the general predictive performance of the numerical simulations, the LGGM
appears to be more appealing than the GGM and QGGM. Although the test results
here are encouraging, in order to obtain a more comprehensive understanding of
the predictive accuracy of the new SGS HF models, more extensive a priori and
a posteriori LES studies based on different test cases involving a greater range of
Reynolds and Grashof numbers will be required in future studies.
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